Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This paper synthesizes three domains of literature to develop a conceptual framework for knowledge integration in cross-disciplinary and cross-sectoral collaborations: (1) studies of inter- and transdisciplinarity, (2) studies of knowledge co-production in sustainability research, and (3) studies focusing on factors influencing knowledge integration in the Science of Team Science field. Combining a scoping review methodology with a cited reference search approach, we identify eight dimensions of knowledge integration: types of knowledge integrated, competencies and education required to practice knowledge integration, organizational structure, types of actor involvement, stages of collaboration, contextual factors, processes and mechanisms of knowledge integration, and types of knowledge integration outcomes. We structure these dimensions across four interconnected components of collaboration: knowledge gathering (inputs), structural dynamics and collaborative dynamics (processes), and integrative outcomes (outputs). We identify the different types of knowledge mobilized in cross-disciplinary collaborations – epistemic, experiential, contextual, cultural, applied, specialized, knowledge for systemic change, and normative knowledge - and link them to the structural features (e.g., team composition, governance) and collaborative dynamics (e.g., stakeholder engagement, interaction frequency, and roles) of cross-disciplinary teams that influence the processes and outcomes of knowledge integration. This framework is intended to function as a heuristic to prompt teams to adapt it to specific contexts, projects, and team configurations. It can also be used a scaffold for designing and evaluating knowledge integration efforts in diverse collaborative settings.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available January 1, 2026
-
Impervious surface cover increases peak fows and degrades stream health, contributing to a variety of hydrologic, water quality, and ecological symptoms, collectively known as the urban stream syndrome. Strategies to combat the urban stream syndrome often employ engineering approaches to enhance stream-foodplain reconnection, dissipate erosive forces from urban runof, and enhance contaminant retention, but it is not always clear how efective such practices are or how to monitor for their efectiveness. In this study, we explore applications of longitudinal stream synoptic (LSS) monitoring (an approach where multiple samples are collected along stream fowpaths across both space and time) to narrow this knowledge gap. Specifcally, we investigate (1) whether LSS monitoring can be used to detect changes in water chemistry along longitudinal fowpaths in response to stream-foodplain reconnection and (2) what is the scale over which restoration eforts improve stream quality. We present results for four diferent classes of water quality constituents (carbon, nutrients, salt ions, and metals) across fve watersheds with varying degrees of stream-foodplain reconnection. Our work suggests that LSS monitoring can be used to evaluate stream restoration strategies when implemented at meter to kilometer scales. As streams fow through restoration features, concentrations of nutrients, salts, and metals significantly decline (p<0.05) or remain unchanged. This same pattern is not evident in unrestored streams, where salt ion concentrations (e.g., Na+, Ca2+, K+) signifcantly increase with increasing impervious cover. When used in concert with statistical approaches like principal component analysis, we fnd that LSS monitoring reveals changes in entire chemical mixtures (e.g., salts, metals, and nutrients), not just individual water quality constituents. These chemical mixtures are locally responsive to restoration projects, but can be obscured at the watershed scale and overwhelmed during storm eventsmore » « less
-
Along urban streams and rivers, various processes, including road salt application, sewage leaks, and weathering of the built environment, contribute to novel chemical cocktails made up of metals, salts, nutrients, and organic matter. In order to track the impacts of urbanization and management strategies on water quality, we conducted longitudinal stream synoptic (LSS) monitoring in nine watersheds in five major metropolitan areas of the U.S. During each LSS monitoring survey, 10–53 sites were sampled along the flowpath of streams as they flowed along rural to urban gradients. Results demonstrated that major ions derived from salts (Ca2+, Mg2+, Na+, and K+) and correlated elements (e.g. Sr2+, N, Cu) formed ‘salty chemical cocktails’ that increased along rural to urban flowpaths. Salty chemical cocktails explained 46.1% of the overall variability in geochemistry among streams and showed distinct typologies, trends, and transitions along flowpaths through metropolitan regions. Multiple linear regression predicted 62.9% of the variance in the salty chemical cocktails using the six following significant drivers (p < 0.05): percent urban land, wastewater treatment plant discharge, mean annual precipitation, percent silicic residual material, percent volcanic material, and percent carbonate residual material. Mean annual precipitation and percent urban area were the most important in the regression, explaining 29.6% and 13.0% of the variance. Different pollution sources (wastewater, road salt, urban runoff) in streams were tracked downstream based on salty chemical cocktails. Streams flowing through stream-floodplain restoration projects and conservation areas with extensive riparian forest buffers did not show longitudinal increases in salty chemical cocktails, suggesting that there could be attenuation via conservation and restoration. Salinization represents a common urban water quality signature and longitudinal patterns of distinct chemical cocktails and ionic mixtures have the potential to track the sources, fate, and transport of different point and nonpoint pollution sources along streams across different regions.more » « less
-
Freshwater Salinization Syndrome (FSS) refers to groups of biological, physical, and chemical impacts which commonly occur together in response to salinization. FSS can be assessed by the mobilization of chemical mixtures, termed “chemical cocktails”, in watersheds. Currently, we do not know if salinization and mobilization of chemical cocktails along streams can be mitigated or reversed using restoration and conservation strategies. We investigated 1) the formation of chemical cocktails temporally and spatially along streams experiencing different levels of restoration and riparian forest conservation and 2) the potential for attenuation of chemical cocktails and salt ions along flowpaths through conservation and restoration areas. We monitored high-frequency temporal and longitudinal changes in streamwater chemistry in response to different pollution events (i.e., road salt, stormwater runoff, wastewater effluent, and baseflow conditions) and several types of watershed management or conservation efforts in six urban watersheds in the Chesapeake Bay watershed. Principal component analysis (PCA) indicates that chemical cocktails which formed along flowpaths (i.e.,permanent reaches of a stream) varied due to pollution events. In response to winter road salt applications, the chemical cocktails were enriched in salts and metals (e.g.,Na+, Mn, and Cu). During most baseflow and stormflow conditions, chemical cocktails were less enriched in salt ions and trace metals. Downstream attenuation of salt ions occurred during baseflow and stormflow conditions along flowpaths through regional parks, stream-floodplain restorations, and a national park. Conversely, chemical mixtures of salt ions and metals, which formed in response to multiple road salt applications or prolonged road salt exposure, did not show patterns of rapid attenuation downstream. Multiple linear regression was used to investigate variables that influence changes in chemical cocktails along flowpaths. Attenuation and dilution of salt ions and chemical cocktails along stream flowpaths was significantly related to riparian forest buffer width, types of salt pollution, and distance downstream. Although salt ions and chemical cocktails can be attenuated and diluted in response to conservation and restoration efforts at lower concentration ranges, there can be limitations in attenuation during road salt events, particularly if storm drains bypass riparian buffers.more » « less
-
Increasing salt production and use is shifting the natural balances of salt ions across Earth systems, causing interrelated effects across biophysical systems collectively known as freshwater salinization syndrome. In this Review, we conceptualize the natural salt cycle and synthesize increasing global trends of salt production and riverine salt concentrations and fluxes. The natural salt cycle is primarily driven by relatively slow geologic and hydrologic processes that bring different salts to the surface of the Earth. Anthropogenic activities have accelerated the processes, timescales and magnitudes of salt fluxes and altered their directionality, creating an anthropogenic salt cycle. Global salt production has increased rapidly over the past century for different salts, with approximately 300 Mt of NaCl produced per year. A salt budget for the USA suggests that salt fluxes in rivers can be within similar orders of magnitude as anthropogenic salt fluxes, and there can be substantial accumulation of salt in watersheds. Excess salt propagates along the anthropogenic salt cycle, causing freshwater salinization syndrome to extend beyond freshwater supplies and affect food and energy production, air quality, human health and infrastructure. There is a need to identify environmental limits and thresholds for salt ions and reduce salinization before planetary boundaries are exceeded, causing serious or irreversible damage across Earth systems.more » « less
An official website of the United States government
